ANALYSIS OF CAVITATION LEVEL IN WADASLINTANG HYDROPOWER PLANT USING THOMA CAVITATION FACTOR
ANALYSIS OF CAVITATION LEVEL IN WADASLINTANG HYDROPOWER PLANT USING THOMA CAVITATION FACTOR
Budi Prasetyo
Universitas Tidar
Trisma Jaya Saputra
Universitas Tidar
Nurmala Dyah Fajarningrum
Universitas Tidar
DOI: https://doi.org/10.19184/rotor.v17i2.53593
ABSTRACT
Turbine damage can be caused by several causes, including damage to the turbine due to cavitation on the surface of its blades. Miscalculation of the position or location of the turbine can occur and will result in this cavitation. The Thoma cavitation factor is used to determine whether the turbine operation is safe from cavitation. This research was conducted at the Wadaslintang Hydroelectric Power Plant. The research used a quantitative descriptive research method. This study aims to determine the level of cavitation that occurs in the Francis turbine at an actual reservoir elevation of 169.23 meters above sea level with maximum guide vane openings to minimum guide vane openings. At variations in guide vane openings of 100% and 80% cavitation occurs, while at guide vane openings of 76%, 60%, 40%, and 20% cavitation does not occur. The larger the guide vane opening, the cavitation level is in a more dangerous condition because the difference between the cavitation factor and the critical cavitation factor is smaller, with the difference values of 1.285073, 1.023435, 0.970782, 0.763080, 0.506127, and 0.253081, and 0.25313739, respectively. The smaller the guide vane opening, the smaller the risk of cavitation, but the power generated is also smaller. Safe operating conditions from cavitation with the greatest power are found at a guide vane opening of 76%-80%.
Keywords: Francis turbine, guide vane, cavitation, thoma cavitation factor.
REFERENCES
[1] Kumar, K. and Saini, R.P., 2022. A review on operation and maintenance of hydropower plants. Sustainable Energy Technologies and Assessments, Vol. 49 p. 101704.
[2] Taufiqurrahman, A. and Windarta, J., 2020. Overview Potensi dan Perkembangan Pemanfaatan Energi Air di Indonesia. Jurnal Energi Baru Dan Terbarukan, Vol. 1 (3) pp. 124-132.
[3] Khare, R. and Prasad, V., 2021. Prediction of cavitation and its mitigation techniques in hydraulic turbines-A review. Ocean Engineering, Vol. 221 p. 108512.
[4] Sudiar, A., Heka, A.E. and Cahyani, R.F., 2019. Pengembangan Aplikasi Perhitungan Kavitasi Turbin Reaksi. INTEKNA Jurnal Informasi Teknik dan Niaga, Vol. 19 (1) pp.6-14.
[5] Kamal, M., Saini, G., Abbas, A. and Prasad, V., 2021. Prediction and analysis of the cavitating performance of a Francis turbine under different loads. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp.1-25.
[6] Gurning, F.P., Nasution, A.H., Gultom, S., Zulkifli, A. and Ariani, F., 2017. Pengaruh Bukaan Sudu Pengarah Terhadap Tingkat Kavitasi Di Sisi Masuk Pipa Isap Turbin Francis Vertikal. Jurnal Dinamis, Vol. 3 pp. 24–36.
[7] Widiasmadi N., 2023, Pembangkit Hidro. Adab: Indramayu, 73.
[8] Agarwal T., What is Francis Turbine : Working & Its Applications, Electronics Projects Focus. Accessed: Jul. 10, 2024. [Online]. Available: https://www.elprocus.com/francis-turbine/
[9] Himran S., 2017. Turbin Air-Teori & Dasar Perencanaan, ANDI: Yogyakarta, 155-160.
[10] Bansal R. K., 2004, A Textbook of Fluid Mechanics and Hydraulic Machines, Ninth Edition, Laxmi Publications: New Delhi, 854-982.
[11] Madeira, A.A., 2020. Major and minor head losses in a hydraulic flow circuit: experimental measurements and a Moody’s diagram application. Eclética Química, Vol. 45 (3) pp. 47-56.
[12] Putra, R.H., Muchlisinalahuddin, M. and ARIEF, R.K., 2021. Analisis Tingkat Kavitasi Turbin Francis PLTA Batang Agam. JTTM: Jurnal Terapan Teknik Mesin, Vol. 2 (2) pp. 78–87.
[13] Wahyudi, A., Mahmuddin, M. and Habiba, S., 2024. Peningkatan Daya Turbin Kaplan dengan Variasi Massa Turbin. Innovative: Journal Of Social Science Research, Vol. 4(2), pp. 9150-9164.
Published
30-11-2024
Issue
Vol. 17 No. 2 2024: ROTOR: Jurnal Ilmiah Teknik Mesin
Pages
45-50
License
Copyright (c) 2024 ROTOR:Jurnal Ilmiah Teknik Mesin
How to Cite
Prasetyo, B., Saputra, T.J. and Fajarningrum, N.D., 2024. ANALYSIS OF CAVITATION LEVEL IN WADASLINTANG HYDROPOWER PLANT USING THOMA CAVITATION FACTOR. ROTOR, 17(2), pp.45-50. https://doi.org/10.19184/rotor.v17i2.53593