CHARACTERIZATION OF SALAK WEDI ACTIVATED CARBON STRUCTURE USING KOH AND ZnCl2 ACTIVATOR
CHARACTERIZATION OF SALAK WEDI ACTIVATED CARBON STRUCTURE USING KOH AND ZnCl2 ACTIVATOR
Aprillia Dwi Ardianti
Universitas Nahdlatul Ulama Sunan Giri
Rizka Nur Faila1
Universitas Nahdlatul Ulama Sunan Giri
DOI: https://doi.org/10.19184/rotor.v16i1.35250
ABSTRACT
Activated carbon can be made from a variety of organic and inorganic raw materials. One of the organic materials with great potential in the manufacture of activated carbon is the bark of salak wedi (Salacca Zalacca). The purpose of this study was to determine the physical characteristics of the activated carbon of salak wedi bark which has been chemically activated using KOH and ZnCl2 with the process of being activated once using only KOH or ZnCl2 and multilevel activation using a combination of KOH and ZnCl2 to determine the number of pores in the sample and to determine the presence of a crystal structure in the sample. The research method includes sample making, single and multilevel activation processes, then SEM and XRD tests are carried out. The results of SEM with multilevel activation have more pores than the activated carbon sample of bark once. The SEM results obtained that the multilevel activation has a larger number of pores compared to the activation which is only carried out once, with the result that the largest pore volume with the stratified KOH activated carbon + ZnCl2 (s) is 35,976,798,714 nm3. The XRD analysis indicated that activated carbon from the bark of salak wedi is a material with good conductivity properties because it has a relatively high crystalline structure, both on one-time activation and multilevel activation. Time using KOH activator obtained phase crystalline with the most significant percentage if compared with another activation.
Keywords: Carbon active, Salak, KOH and ZnCl2, Characterization.
REFERENCES
[1] Kalyani, P. and Anitha, A., 2013. Biomass carbon & its prospects in electrochemical energy systems. Int J Hydrogen Energy. Vol. 38 (10) pp. 4034–4045.
[2] Mdoe, J. E., 2014. Agricultural waste as raw materials for the production of activated carbon. Huria: journal of the open university of Tanzania. Vol. 16 pp. 89–103.
[3] Zhang, X., Zhang, L., and Li, A. 2019. Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors. Bioresour Technol. Vol. 294 pp. 122113.
[4] Sayğl, H. and Güzel, F., 2016. High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Clean Prod. Vol. 113, pp. 995–1004.
[5] Mehdi, R., Khoja, A. H., Naqvi, S. R., Gao, N., and Amin, N. A. S, 2022. A Review on Production and Surface Modifications of Biochar Materials via Biomass Pyrolysis Process for Supercapacitor Applications. Catalysts. vol. 12 (7) pp. 798.
[6] Abioye, A. M. and Ani, F. N., 2015. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and sustainable energy reviews. Vol. 52 pp. 1282–1293.
[7] Ismanto, A. E., Wang, S., Soetaredjo, F. E. and Ismadji, S., 2010. Preparation of Capacitor’s Electrode from Cassava Peel Waste. Bioresource Technology. Vol. 101 (10) pp. 3534–3540.
[8] Şahin, Ö., Saka, C., Ceyhan, A. A. and Baytar O., 2015. Preparation of High Surface Area Activated Carbon from Elaeagnus angustifolia Seeds by Chemical Activation with ZnCl2 in One-Step Treatment and its Iodine Adsorption. Separation Science and Technology. Vol. 50 (6) pp.886-891.
[9] Nurdiansah, H. and Susanti, D., 2013. Pengaruh variasi temperatur karbonisasi dan temperatur aktivasi fisika dari elektroda karbon aktif tempurung kelapa dan tempurung Kluwak terhadap Nilai Kapasitansi Electric Double Layer Capacitor (EDLC). Jurnal Teknik ITS. Vol. 2 (1) pp. F13–F18.
[10] Permata, A. N., Permatasari, R. R. A. P. and Takwanto, A., 2019. Studi Awal Pengaruh Suhu dan Konsentrasi Pada Proses Aktivasi Karbon dari Kayu Halaban Menggunakan ZnCl2 dan KOH. DISTILAT: JURNAL TEKNOLOGI SEPARASI, Vol. 5 (2) pp. 141–146.
[11] Waluyo, H. M., Faryuni, I. D. and Muid, A., 2017. Analisis Pengaruh Ukuran Pori Terhadap Sifat Listrik Karbon Aktif Dari Limbah Tandan Sawit Pada Prototipe Baterai. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat. Vol. 14 (1) pp. 27–33.
[12] Tanaka, K., Aoki, H., Ago, H., Yamabe, T. and Okahara, K., 1997. Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes. Carbon N Y. Vol. (1) pp. 121–125.
[13] Wulandari, R., Zakir, M., and Karim, A., 2017. Penentuan Kapasitansi Spesifik Karbon Aktif Tempurung Kemiri (Alleurites mollucana) Hasil Modifikasi Dengan HNO3, H2SO4, dan H2O2 Menggunakan Metode Cyclic Voltammetry.
[14] Fagbohun, E. O., Wang, Q., Spessato, L., Zheng, Y., Li, W., Olatoye, A. G., & Cui, Y., 2022. Physicochemical regeneration of industrial spent activated carbons using a green activating agent and their adsorption for methyl orange. Surfaces and Interfaces. Vol. 29 pp. 101696.
[15] Fauziah, N., 2009. Pembuatan arang aktif secara langsung dari kulit acacia mangium wild dengan aktivasi fisika dan aplikasinya sebagai adsorben, UT – Forest
[16] Hoang, A. T., Kumar, S., Lichtfouse, E., Cheng, C. K., Varma, R. S., Senthilkumar, N., Nguyen, P. Q. P. and Nguyen, X. P., 2022. Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. Chemosphere. Vol. 302 pp. 134825
Published
30-06-2023
Issue
Vol. 16 No. 1 2023: ROTOR: Jurnal Ilmiah Teknik Mesin
Pages
1-4
License
Copyright (c) 2023 ROTOR:Jurnal Ilmiah Teknik Mesin
How to Cite
Ardianti, A.D. and Faila, R.N., 2023. CHARACTERIZATION OF SALAK WEDI ACTIVATED CARBON STRUCTURE USING KOH AND ZnCl2 ACTIVATOR. ROTOR, 16(1), pp.1-4. https://doi.org/10.19184/rotor.v16i1.35250